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Abstract

This paper considers three variants of quantum interactive proof systems in which short
(meaning logarithmic-length) messages are exchanged between the prover and verifier. The
first variant is one in which the verifier sends a short message to the prover, and the prover
responds with an ordinary, or polynomial-length, message; the second variant is one in which
any number of messages can be exchanged, but where the combined length of all the messages
is logarithmic; and the third variant is one in which the verifier sends polynomially many
random bits to the prover, who responds with a short quantum message. We prove that in
all of these cases the short messages can be eliminated without changing the power of the
model, so the first variant has the expressive power of QMA and the second and third variants
have the expressive power of BQP. These facts are proved through the use of quantum state
tomography, along with the finite quantum de Finetti theorem for the first variant.

1 Introduction

The interactive proof system model extends the notion of efficient proof verification to an inter-
active setting, where a computationally unrestricted prover tries to convince a computationally
bounded verifier that an input string satisfies a particular fixed property. They have been stud-
ied extensively in computational complexity theory since their introduction roughly 25 years ago
[GMR85, GMR89, Bab85, BM88], and as a result much is known about them. (See [AB09] and
[Gol08], for instance, for further discussions of classical interactive proof systems.)

Quantum interactive proof systems are a natural quantum computational extension of the in-
teractive proof system model, where the prover and verifier can perform quantum computations
and exchange quantum information. The expressive power of quantum interactive proofs is no
different from classical interactive proofs: it holds that QIP = PSPACE = IP, and therefore any
problem having a quantum interactive proof system also has a classical one [JJUW09, LFKN92,
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Sha92]. However, quantum interactive proof systems may be significantly more efficient than
classical interactive proofs in terms of the number of messages they require, as every problem in
PSPACE has a quantum interactive proof system requiring just three messages to be exchanged
between a prover and verifier [KW00]. This is not possible classically unless AM = PSPACE, and
this equality implies the collapse of the polynomial-time hierarchy [BM88, GS89].

In this paper we consider quantum interactive proof systems in which some of the messages
are short, by which we mean that the messages consist of a number of qubits that is logarithmic
in the input length. Three particular variants of quantum interactive proofs with short messages
are considered. The first variant is one in which the verifier sends a short message to the prover,
and the prover responds with an ordinary, or polynomial-length, message. We prove that this
model has the expressive power of QMA. The second variant is one in which any number of
messages can be exchanged between the prover and verifier, but where the combined length of
all the messages is logarithmic. We prove that this model has the expressive power of BQP. The
third variant is one in which the verifier sends polynomially many random bits to the prover, who
responds with a short quantum message. We prove that this model also has the expressive power
of BQP. Thus, in each of these three cases, logarithmic-length messages are effectively worthless
and can be removed without changing the power of the model.

One possible application of our work is to the design of new quantum algorithms or QMA ver-
ification procedures. Although we do not yet have interesting examples, we believe it is possible
that an intuition about quantum interactive proof systems with short messages may lead to new
problems being shown to be in BQP or QMA, based on characterizations of the sort we prove.

Observe that all of these three results are immediate in the classical case. For example, one
can enumerate all logarithmic-length interactions between a verifier and prover in polynomial-
time, so our second model, assuming that the verifier is classical, has the expressive power of P
(or BPP in the presence of randomness). This argument, however, does not work in the quantum
case. To explain the difference let us consider the following simplification of this model. As-
sume that instead of an arbitrary number of messages of logarithmic total length, there is only one
logarithmic-size message allowed which is sent by the prover. This model is denoted by QMAlog,
and was known to be equal to BQP [MW05]. Here we present another proof for this fact to il-
lustrate the main ideas of the paper. Upon receiving a logarithmic-size message from the prover,
the verifier applies a binary measurement {Pacc, Prej} to decide whether to accept or reject. Thus
the acceptance probability is at most the maximum eigenvalue of Pacc. Although Pacc acts on a
logarithmic number of qubits, it is given by a polynomial-size circuit, so one cannot directly com-
pute the matrix representation of Pacc in polynomial-time. Nevertheless, using quantum process
tomography we can perform the measurement {Pacc, Prej} on polynomially many known states,
and somehow by taking the average of their outcomes compute an approximation of Pacc. Since
the matrix representation of Pacc has only polynomially many entries, this approximation can be
arbitrarily tight. The next step is to simply find the maximum eigenvalue of this approximation.

In this paper instead of applying quantum process tomography on a measurement, we per-
form quantum state tomography on the normalized Choi-Jamiołkowski representation of the quan-
tum channel corresponding to the measurement. These two approaches are equivalent, but the
second one unifies the arguments in different sections.

Besides quantum state tomography and Choi-Jamiołkowski representation of quantum chan-
nels, finite quantum de Finetti theorem is another important tool in this work. Suppose that we
are given some copies of a state and we want to verify that it is closed to some given state. Us-
ing quantum state tomography on these copies we can find an approximation of the unknown
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state and solve the problem. Assume now that we are not guaranteed that these copies are indeed
copies of the same state; there can even be entanglement among different copies. To overcome
these difficulties we use finite quantum de Finetti theorem to reduce the problem to the first case.

The remainder of this paper has the following organization. Section 2 discusses some of the
background information needed for the rest of the paper, including background on the Choi-
Jamiołkowski representation of quantum channels, quantum state tomography, finite quantum de
Finetti theorem, and quantum interactive proof systems. Sections 3, 4, and 5 then discuss the three
variants of quantum interactive proof systems with short messages described above.

2 Background

We assume the reader is familiar with quantum information and computation, including the ba-
sic quantum complexity classes BQP and QMA, simple properties of mixed states, measurements,
channels, and so on [KSV02, NC00]. The purpose of the present section is to highlight background
knowledge on three topics, represented by the three subsections below, that are particularly rele-
vant to this paper. These topics are: the Choi-Jamiołkowski representation of quantum channels,
quantum state tomography, and quantum interactive proof systems.

Before discussing these three topics, it is appropriate to mention a few simple points of notation
and terminology. Throughout this paper we let Σ = {0, 1} denote the binary alphabet, and for
each k ∈ N we write C(Σk) to denote the finite-dimensional Hilbert space whose standard basis
vectors are indexed by Σk (i.e., the Hilbert space associated with a k-qubit quantum register). The
Dirac notation is used to describe vectors in spaces of this sort.

For a given space Q = C(Σk), we write L (Q) to denote the space of all linear mappings from
Q to itself, which is associated with the space of all complex matrices with rows and columns
indexed by Σk in the usual way. The subsets of this space representing the positive semidefinite
operators and density operators on Q are denoted Pos (Q) and D (Q), respectively. A standard
inner product on L (Q) is defined as 〈X, Y〉 = Tr(X∗Y) for all X, Y ∈ L (Q) (where X∗ denotes the
adjoint, or conjugate-transpose, of X). The trace norm of an operator X ∈ L (Q) is defined as

‖X‖1 = Tr
√

X∗X,

and the spectral (or operator) norm of X is denoted ‖X‖.

2.1 Quantum channels and the Choi-Jamiołkowski representation

A quantum channel from a k-qubit space Q = C(Σk) to an l-qubit space R = C(Σl) is a completely
positive and trace-preserving linear mapping of the form Φ : L (Q) → L (R). (Φ is completely
positive if Φ ⊗ IL(S), for every Hilbert space S , is positive, meaning that it sends positive semidef-
inite operators to positive semidefinite ones. Trance-preserving means that Tr(Φ(ρ)) = Tr(ρ).)
We will write C (Q,R) to denote the set of all such quantum channels. For any quantum channel
Φ ∈ C (Q,R) one defines the (normalized) Choi-Jamiołkowski representation [Jam72, Cho75] of
Φ as

ρ =
1

2k ∑
y,z∈Σk

Φ(|y〉〈z|)⊗ |y〉〈z| . (1)

In other words, this is the l + k qubit state that results from applying Φ to one-half of k pairs of
qubits in the |φ+〉 = (|00〉+ |11〉)/

√
2 state.
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The action of the mapping Φ can be recovered from its normalized Choi-Jamiołkowski repre-
sentation in the following way that makes use of post-selection. Suppose that Q and Q0 are k-qubit
registers and R is an l-qubit register, that the pair (R,Q0) is initialized to the state ρ as defined by
Φ in (1), and that Q is in an arbitrary quantum state (and is possibly entangled with additional
registers not including Q0 and R). Consider the following procedure:

1. Measure each qubit of Q together with its corresponding qubit in Q0 with respect to the Bell
basis.

2. If every one of these k measurements results in an outcome corresponding to the Bell state
|φ+〉, then output “success,” else output “failure.”

This procedure gives the outcome “success” with probability 4−k, and conditioned on success
the registerR is precisely as it would be had it resulted from the channel Φ being applied to Q. (The
registers Q and Q0 can safely be discarded if the procedure succeeds.) To see this, assume first that
the joint state of (R,Q0,Q) is ρ ⊗ ξ before the measurement takes place. Then the (unnormalized)
state of R after the measurements are performed, assuming the end result is “success,” is

1

22k ∑
y,y′,z,z′∈Σk

Φ(|y〉〈z|)〈y′|y〉〈z|z′〉〈y′|ξ|z′〉 = 1

4k ∑
y,z∈Σk

Φ (|y〉〈y| ξ |z〉〈z|) = 1

4k
Φ(ξ).

The probability of success is therefore 4−k, and conditioned on this outcome the process imple-
ments the channel Φ. In our applications k is logarithmic in the size of the problem, so Φ is
implemented with an inverse polynomial probability which is enough for us. The fact that this
process implements the channel Φ exactly for all density operators ξ implies that it also operates
correctly in the case that Q is entangled with additional registers.

2.2 Quantum state tomography

Quantum state tomography is the process by which an approximate description of an unknown
quantum state is obtained by measurements on many independent copies of the unknown state.
To be more precise, let Q = C(Σk) denote the space corresponding to a k-qubit register, and sup-
pose that X1, . . . ,XN are k-qubit quantum registers independently prepared in an unknown k-qubit
state ρ ∈ D (Q). The purpose of quantum state tomography is to obtain an explicit description of
a k-qubit state that closely approximates ρ.

One way to perform quantum state tomography is through the use of an information-complete
measurement. A measurement {Pa : a ∈ Γ} on k-qubit registers is information-complete if and only
if the set {Pa : a ∈ Γ} spans the entire 4k-dimensional space L (Q). When such a measurement is
performed on a k-qubit state ρ, each measurement outcome is obtained with probability

p(a) = 〈Pa, ρ〉 .

Based on the assumption that {Pa : a ∈ Γ} is information-complete, this vector p of probabil-
ities uniquely determines the state ρ. A close approximation of p, which may be obtained by
sufficiently many independent measurements, leads to an approximate description of ρ.

The accuracy of an approximation based on the process just described naturally depends on the
choice of an information-complete measurement as well as the specific notion of approximation
that is considered. Our interest will be on the trace distance ‖ρ − σ‖1 between the approximation
σ and the true state ρ. To describe the “quality” of an information-complete measurement, it
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is appropriate to describe the specific process that is used to reconstruct ρ from the vector of
probabilities p.

For any spanning set {Pa : a ∈ Γ} of L (Q), there exists a set {Ma : a ∈ Γ} ⊆ L (Q) that
satisfies

∑
a∈Γ

Ma 〈Pa, X〉 = X

for every X ∈ L (Q). (One may find such a set {Ma : a ∈ Γ} by solving a system of linear
equations.) The set {Ma : a ∈ Γ} is uniquely determined when {Pa : a ∈ Γ} has exactly 4k

elements (i.e., is a basis), and hereafter we will restrict our attention to this case. Notice that if ρ is
a density matrix, the coefficients p(a) = 〈Pa, ρ〉 form a probability distribution. If q is a probability
vector that represents an approximation to p, it holds that

∥

∥

∥

∥

∥

∑
a∈Γ

p(a)Ma − ∑
a∈Γ

q(a)Ma

∥

∥

∥

∥

∥

1

≤ ∑
a∈Γ

|p(a)− q(a)| ‖Ma‖1 ≤ ‖p − q‖1 max
a∈Γ

‖Ma‖1 .

It is therefore desirable that the maximum trace norm over the set {Ma : a ∈ Γ} determined by
the measurement {Pa : a ∈ Γ} is as small as possible.

There is one additional consideration that is sometimes relevant, which is that the approxima-
tion

∑
a∈Γ

q(a)Ma

may fail to be positive semidefinite, and therefore fail to represent a valid quantum state. In this
situation one can find a quantum state near to the approximation by renormalizing the positive
part of the approximation. For the applications of tomography in this paper, however, this issue
may safely be disregarded, as non-positive approximations of density operators will still provide
valid approximations to the quantities we are interested in.

An example of an information-complete measurement on a single qubit is given by the follow-
ing matrices:

P0 =

(

2+
√

2
8

1+i
8

1−i
8

2−
√

2
8

)

, P1 =

(

2−
√

2
8

1−i
8

1+i
8

2+
√

2
8

)

,

P2 =

(

2+
√

2
8

−1−i
8

−1+i
8

2−
√

2
8

)

, P3 =

(

2−
√

2
8

−1+i
8

−1−i
8

2+
√

2
8

)

.

This is not an optimal information-complete measurement, but it has the advantage of being sim-
ple to describe and can be implemented exactly by a quantum circuit composed of Hadamard,
controlled-not, and π/8-phase gates, and measurement in the standard basis. The corresponding
set {M0, M1, M2, M3} described above is given by

M0 =

(

1+
√

2
2 1 + i

1 − i 1−
√

2
2

)

, M1 =

(

1−
√

2
2 1 − i

1 + i 1+
√

2
2

)

,

M2 =

(

1+
√

2
2 −1 − i

−1 + i 1−
√

2
2

)

, M3 =

(

1−
√

2
2 −1 + i

−1 − i 1+
√

2
2

)

.
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It holds that ‖Ma‖1 =
√

10 < 4 for a ∈ Γ = {0, 1, 2, 3}.
An information-complete measurement for k qubits may be obtained by taking tensor products

of the above matrices. More specifically, for each x ∈ Γk, let us define 2k × 2k matrices Px and Mx

as
Px = Px1

⊗ · · · ⊗ Pxk
and Mx = Mx1

⊗ · · · ⊗ Mxk
.

Then {Px : x ∈ Γk} is an information-complete measurement, and its corresponding set is given
by {Mx : x ∈ Γk}. By the multiplicativity of the trace norm, it holds that ‖Mx‖1 = 10k/2

< 4k for
every k.

Now, let us suppose that ρ is a quantum state on k qubits, and tomography (using the mea-
surements just described) is performed on N copies of ρ. More precisely, the measurement {Px} is
performed independently on each of the N copies of ρ, a probability distribution q : Γk → [0, 1] is
taken to be the frequency distribution of the outcomes, and an approximation

H = ∑
x∈Γk

q(x)Mx

to ρ is computed. We require a bound on the accuracy of this approximation. Of course, nothing
can be said in the worst case, as any sequence of measurement outcomes could occur with very
small probability in general.

Lemma 1. For any choice of ε > 0, taking N ≥ 210k/ε3 will guarantee that with probability at least 1 − ε,
the estimate H satisfies ‖ρ − H‖1 < ε.

Proof. For any δ > 0, and any fixed choice of x ∈ Γk, it follows from Hoeffding’s inequality that

Pr [|q(x)− p(x)| ≥ δ] ≤ 2 exp
(

−2Nδ2
)

.

By the union bound it follows that

Pr
[

‖q − p‖1 ≥ 4kδ
]

≤ Pr
[

|q(x)− p(x)| ≥ δ for at least one x ∈ Γk
]

≤ 22k+1 exp
(

−2Nδ2
)

.

Setting δ = ε/16k and using the inequality e−α
< 1/α for all α > 0, we have

Pr
[

‖q − p‖1 ≥ ε/4k
]

≤ 22k+1 exp
(

−22k+1/ε
)

< ε.

It follows that
Pr[‖ρ − H‖1 ≥ ε] ≤ Pr[‖q − p‖1 ≥ ε/4k] < ε.

The notion of quantum process tomography has also been considered, where a quantum mea-
surement or channel is approximated through many independent evaluations of an appropriate
sort (see for example [NC00]). In this paper, however, it is not necessary to consider this sort
of tomography as being any different from state tomography. Specifically, we will approximate
channels (and measurements, modeled as channels) by evaluating them on maximally entangled
states, followed by ordinary quantum state tomography on the normalized Choi-Jamiołkowski
representations that result.
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2.3 Finite quantum de Finetti theorem

Suppose that Q1, . . . ,QN are all k-qubit registers. A state on (Q1, . . . ,QN) is called symmetric if it is
invariant under any permutation of its registers. For instance, any product state of the form ρ⊗N

is symmetric. Any convex combination of such states is symmetric as well. Note, however, that
there are symmetric states that cannot be written as a convex combination of symmetric product
states as above; as an example consider the following state

|ψ〉 = 1√
2k

∑
x∈Σk

|x〉 ⊗ · · · ⊗ |x〉 .

Nevertheless, by tracing out any subsystem of |ψ〉 the resulting reduce density matrix is in the
convex hall of symmetric product states. The following theorem generalizes this observation.

Theorem 2. (Finite quantum de Finetti theorem [KR05, CKMR07]) Suppose that ρN+m is a symmetric
state over registers (Q1, . . . ,QN+m), and let ρN = TrQN+1···QN+m

(ρN+m). Then there exist states ξ j and
probability vector pj such that

∥

∥

∥

∥

∥

ρN −∑
j

pjξ
⊗N
j

∥

∥

∥

∥

∥

1

≤ N

N + m
2k+1.

2.4 Quantum interactive proofs

Quantum interactive proof systems are a natural quantum analogue of ordinary, classical inter-
active proof systems, where the prover and verifier may process and exchange quantum infor-
mation. We will only consider quantum interactive proof systems having an even number of
messages in this paper, so for simplicity we will restrict our discussion to this case.

For t being a function of the form t : N → N, we define a t-round (or (2t)-message) quantum
verifier V to be a collection of quantum circuits

V =
{

Vx,j : x ∈ Σ∗, 0 ≤ j ≤ t(|x|)
}

,

which can be generated in polynomial-time given x and j. We will generally write t rather than
t(|x|) hereafter in this paper, keeping in mind that t might vary with the input length. We as-
sume that the verifier’s circuits are composed of standard unitary quantum gates (controlled-not,
Hadamard, and π/8-phase gates, let us say), as well as ancillary and erasure gates. Included
in the description of these circuits is a specification of which input and output qubits are to be
considered private memory qubits and which are considered message qubits. The message qubits
refer to qubits that are sent to or received from a prover (to be described shortly). The following
properties are required of the circuits describing a verifier:

1. For each x, the circuit Vx,0 takes no input qubits, and the circuit Vx,t produces a single output
qubit (called the acceptance qubit).

2. There exist functions v1, v2, . . . such that Vx,j−1 outputs vj(|x|) private memory qubits and Vx,j

inputs vj(|x|) private memory qubits for 1 ≤ j ≤ t.

3. There exist functions q1, q2, . . . and r1, r2, . . . that specify the number of message qubits the
verifier sends to or receives from the prover on each round, for a given input length. More
precisely, each circuit Vx,j−1 outputs qj(|x|) message qubits and each circuit Vx,j inputs rj(|x|)
message qubits, for 1 ≤ j ≤ t.

7



accept
or

reject
Vx,0 Vx,1 Vx,2 Vx,3

Px,1 Px,2 Px,3

q1 q2 q3r1 r2 r3

v1 v2 v3

p1 p2

Figure 1: An illustration of an interaction between a prover and verifier in a quantum interactive
proof system. In the picture it is assumed that t = 3. The labels vj, pj, qj and rj on the arrows refer
to the number of qubits represented by each arrow.

Similar to the function t, we will often omit the argument |x| from the functions vj, qj, and rj for
the sake of readability. When it is convenient, we will refer to the message qubits sent from the
verifier to the prover as question qubits and qubits sent from the prover to the verifier as response
qubits.

A t-round (or (2t)-message) prover is defined in a similar way to a t-round verifier, but no
computational restrictions are made. Specifically, a t-round prover is a collection of quantum
channels

P =
{

Px,j : x ∈ Σ∗, 1 ≤ j ≤ t(|x|)
}

.

Again, the input and output qubits of these channels are specified as private memory qubits or
message qubits. When a particular prover P is considered to interact with a given verifier V, one
naturally assumes that they agree on the number of messages and the number of qubits sent in
each message, as suggested by Figure 1. But given the verifier there is no restriction on pj, the
number of private memory qubits used by the prover at the j-th round. Although pj could in
principle be unbounded, it is not difficult to show that for any choice of verifier and prover there
is another prover that simulates the same interaction and uses at most a polynomial number of
private memory qubits (see [GW07]).

Now, on a given input string x, the prover P and verifier V have an interaction by composing
their circuits/channels as described in Figure 1. The maximum acceptance probability for a given
verifier V on an input x refers to the maximum probability for the circuit Vx,t to output 1, assuming
it is measured in the standard basis, over all choices of a compatible prover P. It is always the case
that a maximal probability is achieved by some prover.

Classes of promise problems may be defined by quantum interactive proof systems in a variety
of ways. We will delay the definitions of the classes we consider to the individual sections in which
they are discussed.

3 Two-message quantum interactive proofs with short questions

The first specific variant of quantum interactive proof systems we consider are those in which
just a single round of communication takes place, with the first message being short (at most
logarithmic-length) and the second message being normal (at most polynomial-length). In par-
ticular, let us say that a 1-round verifier V is a [log, poly] quantum verifier if the number q = q1

8



of question qubits it sends during the first and only round of communication satisfies q(n) =
O(log n). For functions of the form a, b : N → [0, 1] we define QIP([log, poly], a, b) to be the class
of all promise problems B = (Byes, Bno) for which there exists a [log, poly] quantum verifier V with
completeness and soundness probability bounds a and b, respectively. In other words, V satisfies
the following properties:

1. For every string x ∈ Byes, there exists a prover P compatible with V that causes V to accept x
with probability at least a(|x|).

2. For every string x ∈ Bno, and every prover P compatible with V, it holds that P causes V to
accept x with probability at most b(|x|).

For a wide range of choices of a and b, these classes coincide with QMA as the following theorem
states.

Theorem 3. Let a, b : N → (0, 1) be polynomial-time computable functions such that a(n) − b(n) ≥
1/p(n) for some polynomial p. Then QIP([log, poly], a, b) = QMA.

Proof. It is clear that QMA ⊆ QIP([log, poly], a, b) for any choice of a and b that satisfy the condi-
tions of the theorem, so our goal is to prove the reverse containment.

Let B = (Byes, Bno) be a promise problem in QIP([log, poly], a, b), and let V be a [log, poly]
verifier that witnesses this fact. We write q (as above) to denote the number of question qubits
the verifier V sends, and write r to denote the number of response qubits V receives. As V is a
[log, poly] verifier it holds that q(n) = O(log n). For a fixed input x, we will write Q = C(Σq) to
denote the question space and R = C(Σr) to denote the response space for V, corresponding to the
question and response qubits in the obvious way.

Our goal is to prove that B ∈ QMA, and to do this we will define a verification procedure (to
be referred to as Arthur) that demonstrates this fact. Suppose P is a prover that interacts with V.
For a fixed input string x, the action of P may be identified with a quantum channel Φ ∈ C (Q,R),
and any such channel defines a quantum state ρ ∈ D (R⊗Q) according to its normalized Choi-
Jamiołkowski representation (1). We will define Arthur so that he expects to receive many inde-
pendent copies of this state. He will check its validity using quantum state tomography, and will
use the state to apply the mapping Φ himself through post-selection.

More specifically, we define Arthur so that he performs the following actions:

1. Input N +m registers (R1,Q1), . . . , (RN+m,QN+m), where N and m are polynomials in the input
length n to be specified below.

2. Randomly permute the pairs (R1,Q1), . . . , (RN+m,QN+m), according to a uniformly chosen per-
mutation π ∈ SN+m, and discard all but the first N + 1 pairs.

3. Perform quantum state tomography on the registers (Q2, . . . ,QN+1), and reject if the resulting
approximation is not within trace-distance δ/2 of the completely mixed state 1/2q, for δ to be
specified below.

4. Simulate the original protocol (P, V) by post-selection using the register pair (R1,Q1). Reject
if the post-selection fails, and otherwise accept or reject as the outcome of the proof system
dictates.

To specify N, m and δ, we first set

ε =
1

p4q+1
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for p being the polynomial whose reciprocal separates the completeness and soundness probabil-
ity bounds a and b. Now set

δ =
ε2

4
, N =

210q

(δ/2)3
and m =

2N4q

ε
.

Given that q is logarithmic, it holds that N, m, 1/ε and 1/δ are polynomially bounded.
Suppose first that x ∈ Byes, which implies that there exists a prover P that causes V to accept

x with probability at least a. Let Φ denote the quantum channel that describes the behavior of P,
and let ρ be the normalized Choi-Jamiołkowski representation of Φ as described in (1). Then for
each of the register pairs (Rj,Qj) being prepared independently in the state ρ, it holds that Arthur
rejects in step 3 with probability at most δ/2 (Lemma 1), and accepts in step 4 with probability at
least a/4q (conditioned on not having rejected in step 3). Arthur therefore accepts with probability
at least

(

1 − δ

2

)

a

4q
>

a

4q
− ε.

Now let us suppose that x ∈ Bno. We first consider the situation in which the state of the
registers (Q1, . . . ,QN+1) at the beginning of step 3 has the form

ξ⊗(N+1)

for some density operator ξ ∈ D (Q). There are two cases to consider: one is that ‖ξ − 1/2q‖1 < δ

and the other is that ‖ξ − 1/2q‖1 ≥ δ. If it is the case that ‖ξ − 1/2q‖1 < δ, then by the Fuchs-
van de Graaf inequalities [FvdG99] there must exist a state ρ ∈ D (R⊗Q) satisfying TrR(ρ) =
1/2q that is within trace distance ε of the state of (R1,Q1). To be more precise, consider a fixed
purification |ψ〉 of the state of (R1,Q1) with an auxiliary register E. Since ξ = TrR1E1

(|ψ〉〈ψ|) has a
high fidelity with 1/2q, and due to the characterization of fidelity in terms of purifications, there
exists a purification of 1/2q over (R,Q,E) that has a large overlap with |ψ〉. Then ρ can be chosen
as the reduce density matrix of this pure state over (R,Q). Now given that x ∈ Bno, the state ρ

would cause acceptance in step 4 with probability at most b/4q, and therefore acceptance may
occur in the case at hand with probability at most b/4q + ε. If, on the other hand, it holds that
‖ξ − 1/2q‖1 ≥ δ, then rejection must occur in step 3 with probability at least 1 − δ/2, so Arthur
accepts with probability at most δ/2 (which of course is smaller than b/4q + ε). Thus, in both cases,
acceptance occurs with probability at most b/4q + ε. It follows that if the registers (Q1, . . . ,QN+1)
are, at the beginning of step 3, in any state of the form

∑
j

pjξ
⊗(N+1)
j (2)

(i.e., a convex combination of states of the form just discussed), acceptance may occur with prob-
ability at most b/4q + ε. Finally, by the finite quantum de Finetti theorem (Theorem 2) it holds
that the state of (Q1, . . . ,QN+1) after step 2, is within trace-distance ε of a state of the form (2), and
therefore the probability of acceptance is at most b/4q + 2ε in the general case.

Given that a/4q − ε and b/4q + 2ε are efficiently computable and separated by the reciprocal
of a polynomial, it holds that B is in QMA as claimed.
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Vx,0 Vx,1 Vx,2 Vx,3 Vx,4

Px,1 Px,2 Px,3 Px,4

Figure 2: Illustration of a quantum interactive proof in which the messages are single bits.

4 Quantum interactive proofs with only short messages

Next we consider quantum interactive proof systems restricted so that the total number of qubits
exchanged by the prover and verifier is logarithmic. We prove that any problem having such a
quantum interactive proof system is contained in BQP. This fact represents a significant general-
ization of the equality QMAlog = BQP proved in [MW05]. Like the result of the previous section,
our proof of this fact is based on quantum state tomography. In addition we will make use of the
quantum games framework of [GW07].

It is clear that any quantum interactive proof system allowing at most a logarithmic num-
ber of qubits to be exchanged can be simulated by one in which a logarithmic number of single
qubit messages are permitted, because any number of these messages could consist of meaning-
less “dummy” qubits that are interspersed with the qubits sent by the other party. To be more
precise, let t(n) = O(log n) and consider a t-round quantum interactive proof system in which
each message consists of a single qubit (i.e., q1 = r1 = · · · = qt = rt = 1). We will write
QIPlog(a, b) to denote the class of problems having quantum interactive proof systems of this sort
having completeness and soundness probability bounds a and b, respectively. As the following
theorem states, this model offers no computational advantage over BQP.

Theorem 4. Let a, b : N → (0, 1) be polynomial-time computable functions such that a(n) − b(n) ≥
1/p(n) for some polynomial p. Then QIPlog(a, b) = BQP.

Proof. It is clear that BQP ⊆ QIPlog(a, b), and so it remains to prove the reverse containment. To
this end let B = (Byes, Bno) be a promise problem in QIPlog(a, b), and let V be a verifier that wit-
nesses this fact. As above, let t(n) = O(log n) denote the number of rounds of communication this
verifier exchanges with any compatible prover. For a fixed input string x, we will write Q1, . . . ,Qt

to denote copies of the Hilbert spaces C(Σ) associated with the t single-qubit messages that V
sends to a given prover P, and we will write R1, . . . ,Rt to denote copies of the same space C(Σ)
corresponding to the response qubits of P.

The action of V, on a given input string x, is determined by t + 1 quantum circuits Vx,0, . . . , Vx,t

as defined in Section 2. Figure 2 illustrates an interaction between V and a prover P for the case
that t = 4. Now consider the channel Φ obtained from the circuits Vx,0, . . . , Vx,t by setting all
of the response qubits the verifier receives from the prover as input qubits and setting all of the
question qubits sent by the verifier to the prover as output qubits. More precisely, Φ maps states
on the space R1 ⊗ · · · ⊗Rt to states on the space A⊗Q1 ⊗ · · · ⊗Qt, where A denotes the single-
qubit space associated with the acceptance qubit. Figure 3 illustrates this channel for the protocol
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Vx,0 Vx,1 Vx,2 Vx,3 Vx,4

σ

{







Φ(σ)

Figure 3: The channel Φ associated with the quantum interactive proof from Figure 2.

pictured in Figure 2.
Next, let

ρ =
1

2t ∑
y,z∈Σt

Φ(|y〉〈z|)⊗ |y〉〈z|

be the normalized Choi-Jamiołkowski representation of Φ. The state ρ is obviously efficiently
preparable given a description of V. By independently preparing N = 210(2t+1)/ε3 copies of ρ, for
ε > 0 to be specified later, and performing quantum state tomography, one obtains a Hermitian
operator H on A⊗R1 ⊗ · · · ⊗Rt ⊗Q1 ⊗ · · · ⊗ Qt that satisfies ‖H − ρ‖1 < ε with probability at
least 1 − ε. Let us also define

ρ1 = (〈1| ⊗ 1) ρ (|1〉 ⊗ 1) and H1 = (〈1| ⊗ 1) H (|1〉 ⊗ 1)

to denote the projection of these operators on the subspace in which the qubit A is |1〉 (corre-
sponding to accept).

Using the terminology of [GW07], ρ1 is a co-strategy which describes the verifier’s action, and
the prover optimizes the acceptance probability corresponding to ρ1 over all strategies. (Strategies
are defined similar to co-strategies as above but with respcet to the prover’s action.) Given any
strategy X of the prover, the acceptance probability is proportional to the inner product of ρ1 and
X. More precisely, the maximum acceptance probability is equal to

maximize: 2t 〈ρ1, X〉
subject to: X ∈ St

where St ⊂ Pos (R1 ⊗ · · · ⊗ Rt ⊗Q1 ⊗ · · · ⊗ Qt) is the space of all strategies. It is shown in [GW07]
that St is characterizes as S0 = 1 and

Sj =
{

X ≥ 0 : TrR j
(X) = Y ⊗ 1Q j

, Y ∈ Sj−1

}

for j ≥ 1. This characterization of St turns the above optimization problem to a semidefinite
program. So we just need to replace ρ1 with its approximation H1.

It is clear that Tr(X) = 2t for every X ∈ St, and therefore

∣

∣2t 〈ρ1, X〉 − 2t 〈H1, X〉
∣

∣ ≤ 2t ‖X‖ ‖ρ1 − H1‖1 ≤ 4t ‖ρ1 − H1‖1 ≤ 4t ‖ρ − H‖1
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for every X ∈ St. By taking

ε =
1

4t+1p

for instance, one may therefore distinguish the cases x ∈ Byes and x ∈ Bno with probability 1 − ε,
by solving the semidefinite program described above. (Semidefinite programs can be efficiently
solved up to an inverse polynomial accuracy.)

We note that precisely the same argument allows one to conclude that quantum refereed games,
as defined in [GW07], allowing for at most a logarithmic number of qubits of communication
offer no computational power beyond BQP. In other words, QRGlog = BQP, for QRGlog defined
appropriately. The details are left to the reader.

5 Two-message quantum interactive proofs with short answers

In light of the results of Section 3, one may ask if two-message quantum interactive proofs with
short answers (as opposed to short questions) have the power of QMA or even BQP. If this is true
it is likely to be difficult to show: the graph non-isomorphism problem, which is not known to be
in QMA, has a simple and well-known classical protocol [GMW91] requiring polynomial-length
questions and constant-length answers. (Indeed, every problem in QSZK has a two-message
quantum interactive proof system with a constant-length message from the prover to the verifier,
for any choice of constant completeness and soundness errors [Wat02].)

We can show, however, that public-coin quantum interactive proofs in which the verifier sends
polynomially many random bits to the prover, followed by a logarithmic-length quantum message
response from the prover, have only the power of BQP.

Following a similar terminology to the classical case, we refer to a quantum interactive proof
system in which the verifier’s messages to the prover consist of uniformly-generated random bits
as quantum Arthur–Merlin games. Let us write QAM([poly, log], a, b) to denote the class of promise
problems having two-message quantum Arthur–Merlin games with completeness and soundness
probability bounds a and b, in which Merlin’s response to Arthur has logarithmic length.

Theorem 5. Let a, b : N → (0, 1) be polynomial-time computable functions such that a(n) − b(n) ≥
1/p(n) for some polynomial-bounded function p. Then QAM([poly, log], a, b) = BQP.

Proof. Assume that B is a promise problem in QAM([poly, log], a, b), and consider a choice of
Arthur that witnesses this fact. For r(n) = O(log n), and for any choice of an input string x, Arthur
chooses a random string y with length polynomial in |x|, and then measures r = r(|x|) qubits sent
by Merlin with respect to some binary-valued measurement {P

x,y
0 , P

x,y
1 } that depends on x and y.

Thus, assuming that the randomly chosen string is y, the maximum acceptance probability of
Arthur is equal to the spectral norm of P

x,y
1 . So to find P

x,y
1 (and its norm) we perform quantum

state tomography on the normalized Choi-Jamiołkowski representation of the channel

Φx,y(σ) =
〈

P
x,y
0 , σ

〉

|0〉〈0|+
〈

P
x,y
1 , σ

〉

|1〉〈1| ,

which describes Arthur’s measurement.
The following algorithm shows that B ∈ BQP.

1. Choose y uniformly at random (just as Arthur does).
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2. Let

ε =
1

2r+3p
and N =

210(r+1)

ε3
.

Prepare N copies of the state ρ, defined to be the normalized Choi-Jamiołkowski representa-
tion of Φx,y, and perform quantum state tomography of ρ. Let H denote the result. Then by
Lemma 1 with probability at least 1 − ε, ‖ρ − H‖1 ≤ ε.

3. Compute the value
αy = 2r ‖(〈1| ⊗ 1)H(|1〉 ⊗ 1)‖ .

It can easily be shown that αy is an approximation of
∥

∥P
x,y
1

∥

∥. If αy ≥ 1 then accept. Otherwise,
accept with probability αy and reject otherwise.

Since the maximum acceptance probability of Arthur is equal to the expectation value of
∥

∥P
x,y
1

∥

∥

over the random choice of y, and with probability 1 − ε, αy is within distance 2rε of
∥

∥P
x,y
1

∥

∥, the
above procedure has acceptance probability within 1/(4p) of the maximum acceptance probabil-
ity of Arthur. Therefore B ∈ BQP.

6 Open problems

Besides the open problems mentioned above, the following two questions have been raised by
unknown referees which we leave for future works. The first one is to find the expressive power
of the following model: the verifier and prover send messages to each other with the total number
of O(log n) qubits and at the end the prover sends a polynomial-size message to the verifier. This
model contains QMA and it seems that combining the ideas in Sections 3 and 4 the other direction
can also be proved. The other model is an interactive protocol in which the verifier always sends
public-coin messages to the prover of the total polynomial-length and the prover replies with
qubits of the total logarithmic-length.
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